Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Nutr ; 77(8): 803-810, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311868

RESUMO

BACKGROUND: Lactase persistence-the ability to digest lactose through adulthood-is closely related to evolutionary adaptations and has affected many populations since the beginning of cattle breeding. Nevertheless, the contrast initial phenotype, lactase non-persistence or adult lactase deficiency, is still observed in large numbers of people worldwide. METHODS: We performed a multiethnic genetic study of lactase deficiency on 24,439 people, the largest in Russia to date. The percent of each population group was estimated according to the local ancestry inference results. Additionally, we calculated frequencies of rs4988235 GG genotype in Russian regions using the information of current location and birthplace data from the client's questionnaire. RESULTS: The attained results show that among all studied population groups, the frequency of GG genotype in rs4988235 is higher than the average in the European populations. In particular, the prevalence of lactase deficiency genotype in the East Slavs group was 42.8% (95% CI: 42.1-43.4%). We also investigated the regional prevalence of lactase deficiency based on the current place of residence. CONCLUSIONS: Our study emphasizes the significance of genetic testing for diagnostics, i.e., specifically for lactose intolerance parameter, as well as the scale of the problem of lactase deficiency in Russia which needs to be addressed by the healthcare and food sectors.


Assuntos
Intolerância à Lactose , Humanos , Animais , Bovinos , Intolerância à Lactose/epidemiologia , Intolerância à Lactose/genética , Lactase/genética , Lactose , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108224

RESUMO

Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.


Assuntos
Intolerância à Lactose , Miócitos Cardíacos , Animais , Ratos , Transcriptoma , Animais Recém-Nascidos , Intolerância à Lactose/patologia , Inflamação/genética , Inflamação/patologia , Transtornos do Crescimento/patologia
3.
Sci Rep ; 13(1): 2139, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747015

RESUMO

Despite of multiple systematic studies of schizophrenia based on proteomics, metabolomics, and genome-wide significant loci, reconstruction of underlying mechanism is still a challenging task. Combination of the advanced data for quantitative proteomics, metabolomics, and genome-wide association study (GWAS) can enhance the current fundamental knowledge about molecular pathogenesis of schizophrenia. In this study, we utilized quantitative proteomic and metabolomic assay, and high throughput genotyping for the GWAS study. We identified 20 differently expressed proteins that were validated on an independent cohort of patients with schizophrenia, including ALS, A1AG1, PEDF, VTDB, CERU, APOB, APOH, FASN, GPX3, etc. and almost half of them are new for schizophrenia. The metabolomic survey revealed 18 group-specific compounds, most of which were the part of transformation of tyrosine and steroids with the prevalence to androgens (androsterone sulfate, thyroliberin, thyroxine, dihydrotestosterone, androstenedione, cholesterol sulfate, metanephrine, dopaquinone, etc.). The GWAS assay mostly failed to reveal significantly associated loci therefore 52 loci with the smoothened p < 10-5 were fractionally integrated into proteome-metabolome data. We integrated three omics layers and powered them by the quantitative analysis to propose a map of molecular events associated with schizophrenia psychopathology. The resulting interplay between different molecular layers emphasizes a strict implication of lipids transport, oxidative stress, imbalance in steroidogenesis and associated impartments of thyroid hormones as key interconnected nodes essential for understanding of how the regulation of distinct metabolic axis is achieved and what happens in the conditioned proteome and metabolome to produce a schizophrenia-specific pattern.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Proteoma/metabolismo , Proteômica/métodos , Esquizofrenia/genética , Metabolômica/métodos , Metaboloma/fisiologia
4.
Eur J Clin Nutr ; 77(5): 574-578, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690773

RESUMO

BACKGROUND: Overweight is the scourge of modern society and a major risk factor for many diseases. For this reason, understanding the genetic component predisposing to high body mass index (BMI) seems to be an important task along with preventive measures aimed at improving eating behavior and increasing physical activity. METHODS: We analyzed genetic data of a European cohort (n = 21,080, 47.25% women, East Slavs ancestry >80%) for 5 frequently found genes in the context of association with obesity: IPX3 (rs3751723), MC4R (rs17782313), TMEM18 (rs6548238), PPARG (rs1801282) and FTO (rs9939609). RESULTS: Our study revealed significant associations of FTO (rs9939609) (ß = 0.37 (kg/m2)/allele, p = <2 × 10-16), MC4R (rs17782313) (ß = 0.28 (kg/m2)/allele, p = 5.79 × 10-9), TMEM18 (rs6548238) (ß = 0.29 (kg/m2)/allele, p = 2.43 × 10-8) with BMI and risk of obesity. CONCLUSIONS: The results confirm the contribution of FTO, M4CR, and TMEM18 genes to the mechanism of body weight regulation and control.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Masculino , Índice de Massa Corporal , Obesidade/genética , Obesidade/epidemiologia , Peso Corporal , Genótipo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
5.
J Pers Med ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383665

RESUMO

One of the target drugs for plaque psoriasis treatment is apremilast, which is a selective phosphodiesterase 4 (PDE4) inhibitor. In this study, 34 moderate-to-severe and severe plaque psoriasis patients from Russia were treated with apremilast for 26 weeks. This allowed us to observe the effectiveness of splitting patient cohorts based on clinical outcomes, which were assessed using the Psoriasis Area Severity Index (PASI). In total, 14 patients (41%) indicated having an advanced outcome with delta PASI 75 after treatment; 20 patients indicated having moderate or no effects. Genome variability was investigated using the Illumina Infinium Global Screening Array. Genome-wide analysis revealed apremilast therapy clinical outcome associations at three compact genome regions with undefined functions situated on chromosomes 2, 4, and 5, as well as on a single single-nucleotide polymorphism (SNP) on chromosome 23. Pre-selected SNP sets were associated with psoriasis vulgaris analysis, which was used to identify four SNP-associated targeted therapy efficiencies: IL1ß (rs1143633), IL4 (IL13) (rs20541), IL23R (rs2201841), and TNFα (rs1800629) genes. Moreover, we showed that the use of the global polygenic risk score allowed for the prediction of onset psoriasis in Russians. Therefore, these results can serve as a starting point for creating a predictive model of apremilast therapy response in the targeted therapy of patients with psoriasis vulgaris.

6.
Cells ; 7(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366433

RESUMO

Temperature is an important exogenous factor capable of leading to irreversible processes in the vital activity of cells. However, the long-term effects of heat shock (HS) on mesenchymal stromal cells (MSC) remain unstudied. We investigated the karyotype and DNA repair drivers and pathways in the human endometrium MSC (eMSC) survived progeny at passage 6 after sublethal heat stress (sublethal heat stress survived progeny (SHS-SP)). G-banding revealed an outbreak of random karyotype instability caused by chromosome breakages and aneuploidy. Molecular karyotyping confirmed the random nature of this instability. Transcriptome analysis found homologous recombination (HR) deficiency that most likely originated from the low thermostability of the AT-rich HR driving genes. SHS-SP protection from transformation is provided presumably by low oncogene expression maintained by tight co-regulation between thermosensitive HR drivers BRCA, ATM, ATR, and RAD51 (decreasing expression after SHS), and oncogenes mTOR, MDM2, KRAS, and EGFR. The cancer-related transcriptomic features previously identified in hTERT transformed MSC in culture were not found in SHS-SP, suggesting no traits of malignancy in them. The entrance of SHS-SP into replicative senescence after 25 passages confirms their mortality and absence of transformation features. Overall, our data indicate that SHS may trigger non-tumorigenic karyotypic instability due to HR deficiency and decrease of oncogene expression in progeny of SHS-survived MSC. These data can be helpful for the development of new therapeutic approaches in personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...